

Small Wind Turbines and Towers

Small Wind Systems Tutorial Village Power Conference Workshop

Small Wind Turbines are Different

Large Turbines (500-1500 kW)

- Installed in "Windfarm" Arrays
 Totaling 1 100 MW
- ~ \$1,000/kW; Designed for Low Cost of Energy
- Requires 6 m/s (13 mph) Average Sites

Small Turbines (0.3-50 kW)

- Installed in "Rural Residential" On-Grid and Off-Grid Applications
- ~ \$2,000-4,000/kW; Designed for Reliability / Low Maintenance
- Requires 4 m/s (9 mph) Average Sites

More Expensive, but Also More Valuable

Large Turbines

- High Voltage Delivery
- *** Value of Power:**

2-5¢

Small Turbines

- Low Voltage Delivery
- ❖ Value of Power:

6-18¢

Small Turbines Require Less Wind ...

Large Turbines

- ❖ Require ~ Class 3-4 Wind Regime
- **❖ Prefer Class 5**

Small Turbines

Require ~ ClassWind Regime

... So They
Work
More Places

Modern Small Wind Turbines:

High Tech, High Reliability, Low Maintenance

- Products from 400 W –50 kW
- Technically Advanced
- Only 2-3 Moving Parts
- Very Low Maintenance Requirements
- Proven: ~ 2,000 On-Grid and ~ 40,000 Off-Grid Installations

Small Wind: Least Cost Now and Probably Always

Status of the			
Technologies	Photovoltaics	Solar Thermal	Small Wind
Status	Commercial	Demo	Commercial
Installed Cost	\$ 8 / Watt	\$ 10 / Watt	\$ 3.20 / Watt
Payback Period	30 Years	30+ Years	15 Years
Cost Potential	\$ 3 in 2010	?	\$ 1.50 in 2010
Typical Site	Suburban	Southwest	Rural
Available Resources	Poor - Good	Poor - Good	Poor - Great

Turbine Configurations

- Hundreds of Possible Configurations
 ... Most are Bad
- Bad Configurations Keep Showing-up and Wasting Valuable Resources:
 - Savonius Vertical-Axis Rotor
 - Darrieus Vertical-Axis Rotors
 - Cloth-Blade, Sail Wings Rotors
 - Windmill Rotor with Electrical Generator
 - High-Speed Mechanical (CWD)
 - Venturies or Other Flow Concentrators

Technical Challenge

Difficult Operating Environment:

- Energy Inflows from 38 W/m2 (4 m/s) to 94,500 W/m2 (54 m/s)
- 7,000+ Operating Hours per Year
- 75 Million Cycles per Year: > 2 Billion in 30 Year Life
- High Gusts, High Turbulence, Lightning, Icing, Salt, Spray, Sand, Etc.
- Difficult Maintenance Environment
- Dispersed Installations Means Expensive Maintenance & Repairs
- Reliability is Paramount

All Leading Small Turbine Products are Mechanically Simple and have a Similar Configuration

Generic Small Wind Turbine

Mechanically Simplicity ... Few Moving Parts

- 3 Blade Rotor Fixed Pitch
- Special "Integrated"
 Direct Drive Generator,
 Usually Permanent
 Magnet Type
- Tail Aligns Rotor to Wind
- Passive Overspeed Protection by Furling, Either Up or to Side
- No Mechanical Brake ... Shutdown with Electrical Braking

Small Turbine Parts

Furling: Passive Protection

Small Wind Applications

WINDPOWER

On-Grid Systems

Intertie + Back-up

Rotor Size

Relative Size of Small Wind Turbines

Courtesy of Paul Gipe

Small Turbine Rotors

- Blades are the Most Critical Component of a Small Wind Turbine
- 3-Bladed Rotors Run Smoother Than 2-Bladed Rotors
- Fiberglass or Plastic Are Preferred Materials ... Avoid Metal (Fatigue) and Wood (Maintenance)
- Blades Create the Turbine Noise
- ❖ Rotor Efficiency Varies with Blade Design: 20 – 45%
- New Airfoils are Boosting Performance Dramatically

BWC SH3032 Airfoil

Generators / Alternators

- Standard Generators Require Higher Speeds Than a Wind Turbine Rotor Can Deliver
- Use of Speed Increasing Belts or Chains Must be Avoided due to Very Poor Reliability
- Most Manufacturers have Developed Their Own Custom Low Speed Generators
- Both Rotating Shaft and Rotating Case Configurations are Used
- Most Alternators use Permanent Magnets
- Industry Switching from Ferrite to Neodymium "Super Magnets"

Electrical Controls

- Controls Usually Limited to Battery Overcharge Protection
- Unlike Solar, Wind Turbines Normally Sold with Matched Controller
- Simple On-Off Charge Regulators Seem to be Adequate
- Controllers Often the Least Reliable Component
- Paralleling Independent Controllers on DC Bus Works Well
- Easy User Adjustability is Not a Good Feature ... Due to Possibility of Misuse

Towers for Small Turbines

- ❖ Putting a Wind Turbine on a Tower That is Too Short is Like Mounting a Solar Module in the Shade
- Towers Should be 12 m (40 ft) Minimum
- Towers of 24 37 m (80-120 ft) Recommended
- Taller Towers Cost More, But Nearly Always Lower Life-Cycle Costs Due to Performance Improvement
- Hot-Dip Galvanized Steel is the Most Common Tower Material
- Effective Tower Grounding is an Important Part of Lightning Protection

Guyed-Lattice Towers

- Least Expensive Type ... Efficient Use of Materials
- Good Siting Flexibility
- Easily Erected with Gin-Pole on Smaller Systems (>10 kW)
- Periodic Monitoring of Guy-Wire Tension Required
- Simple, Inexpensive Civil Works ... Minimal Concrete Requirements

Tilt-up Towers

- Cost is ~30% More Than Non-Tilting Tower
- Easy to Erect Without a Crane
- Must have 4-Way Guying
- Raising With Hand Winch Possible
- Good Choice for Typhoon Affected Areas

Maintenance

Tilt-up Tower in the Lowered Position for Erection and

Self-Supporting Towers

- Cost is ~50-100% More Than Guyed-Lattice Tower
- Smallest "Foot-Print"
- Requires Substantial Civil Works
- Must be Heavy Duty to Provide Proper Stiffness
- Wood Poles Can be Used for Smaller Units

Shopping for Small Wind Turbines

- Power Ratings are Deceiving Due to Differences in Rated Wind Speeds ... Best Comparison is Energy Production at Same Average Wind Speed
- Reliability and Operating Life are Design Specific ... Small Design Details are Important
- Membership in National Trade Association is Good Sign
- Talk to Actual Users About Operating Experience

Reliability and Maintenance

- Turbines Operate Unattended and Automatically, Even in Severe Weather
- Reliability and Maintenance Requirements are Design Specific ... Look for:
 - Simplicity of Design
 - Fiberglass Blades
 - · Direct Drive, Brushless, Generators
 - Heavy Weight Structural Elements
 - Corrosion-Resistant Materials and Finishes
 - ... and Check Supplier Reputations!
- Best Available Units Require No Scheduled Maintenance and can Operate for 3-6 Years Without Attention
 - Inspection Recommended Every 2 Years
 - At 3-6 Years, Blade Leading Edge Tape Must be Renewed
- **❖** Typical Design Operating Life is 30 Years (Some Small Turbines Have been Operating for More Than 60 Years!)

Barriers to the Market

Why Aren't There More Small Turbines

- High Costs: Low Production Volume & Historical Lack of Subsidies
- Reliability Problems with Light Weight and Inadequate Designs
- Other Technologies have Received the Limelight and More Private & Public Investment
- Wind Resources
 have been Systemically
 Underestimated

Volume Production will Drive Costs Down by 15 – 30%

New Technology is Lowering Costs

US-DOE Advanced Small Wind Turbine Program + Industry Funded R&D

3D Solid Modeling

- Advanced Airfoils
- * "Super-Magnet" Generators
- Low Cost Manufacturing
- Smart Power Electronics
- Very Tall Towers
- Stealth: Low Noise& Visual

Example: Blades as High-TechSpaghetti

New Airfoil for BWC XL.50

30% More Energy 25% Lower Costs 35% More Starting Torque

BWC XL.1

1 kW Wind Turbine

- * 20-60% More Efficient
- Low Wind Boost Circuitry
- Typically Produces 3-10 kWh per Day
- Tilt-up Towers,10-32m
- * \$1,500 Retail

BWC XL.50

- Adapted ABB Variable Speed Drive for On-Grid & Off-Grid
- Designed to Work Well in Low Wind Areas (down to 3 m/s ave.)
- 150,000 kWh/Yr at 11.2 mph (170 ft Tower)
- Installed Cost: ~\$130,000 for Complete Village Power System
- First Deliveries: Summer, 2001 (on-grid); Fall, 2001 (off-grid)

US-DOE has made Small Wind a Major Component of

Clean Energy for the 21st Century

14% of Native American homes have no electricity

Small Turbine Follow-up

- Numerous Manufacturers and Dealers around the world ... Find them on the Internet
- For listings of consultants, manufacturers, and project developers, use the Membership Directory of the American Wind Energy Association (www.awea.org)
- Design assistance available from small turbine manufacturers and DOE/NREL:

Mike Bergey Bergey WindPower Co. 2001 Priestley Ave. Norman, OK 73069 Tel: 405-364-4212

Fax: 405-364-2078 mbergey@bergey.com

www.bergey.com

lan Baring-Gould National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Tel: 303-384-7021 Fax: 303-384-6901

lan_Baring-Gould@nrel.gov

